# **Specification of Thermoelectric Module**

TEC2-127-63-08

## **Description**

The TEC2-127-63-08 is a multistage module designed for greater temperature differential cooling, good for cooling and heating up to  $100 \,^{\circ}$ C applications. It is a 127-63 couples module in size of  $40 \, \text{mm} \times 40 \, \text{mm}$  (top) /  $40 \, \text{mm} \times 40 \, \text{mm}$  (bottom). If higher operation or processing temperature is required, please specify, we can design and manufacture according to your special requirements.

#### **Features**

- High Temperature Differential
- No moving parts, no noise, and solid-state
- Compact structure, small in size, light in weight
- Environmental friendly
- RoHS compliant
- Precise temperature control
- Exceptionally reliable in quality, high performance

## Application

- Infrared (IR) Sensors
- CCD Sensor
- Gas Analyzers
- Calibration Equipment
- CPU cooler and scientific instrument
- Photonic and medical systems
- Guidance Systems

## **Performance Specification Sheet**

| Th (°C)                    | 27   | 50    | Hot side temperature at environment: dry air, N <sub>2</sub>                                              |  |
|----------------------------|------|-------|-----------------------------------------------------------------------------------------------------------|--|
| DT <sub>max</sub> (°C)     | 89.2 | 100.3 | Temperature Difference between cold and hot side of the module when cooling capacity is zero at cold side |  |
| U <sub>max</sub> (Voltage) | 14.6 | 16.1  | Voltage applied to the module at DT <sub>max</sub>                                                        |  |
| I <sub>max</sub> (Amps)    | 8.0  | 8.0   | DC current through the modules at DT <sub>max</sub>                                                       |  |
| Q <sub>Cmax</sub> (Watts)  | 48.7 | 52.4  | Cooling capacity at cold side of the module under DT=0 °C                                                 |  |
| AC resistance (Ohms)       | 1.83 | 1.97  | The module resistance is tested under AC                                                                  |  |
| Tolerance (%)              | ± 10 |       | For thermal and electricity parameters                                                                    |  |

#### Geometric Characteristics Dimensions in millimeters



## **Sealing Option**

#### A. Solder:

#### **B. Sealant:**

1. T100: BiSn (Tmelt=138°C)

1. NS: No sealing (Standard)

2. T200: CuAgSn (Tmelt =  $217^{\circ}$ C)

2. SS: Silicone sealant

3. T240: SbSn (Tmelt =  $240^{\circ}$ C)

3. EPS: Epoxy sealant

#### C. Ceramics:

#### **D. Ceramics Surface Options:**

1. Alumina (Al<sub>2</sub>O<sub>3</sub>, white 96%)

1. Blank ceramics (not metalized)

2. Aluminum Nitride (AlN)

2. Metalized

## **Ordering Option**

|                                                                                      | Suffix | Thickness (mm) | Flatness/ Parallelism (mm)                 | Lead wire length(mm) Standard/Optional length |  |
|--------------------------------------------------------------------------------------|--------|----------------|--------------------------------------------|-----------------------------------------------|--|
|                                                                                      | TF     | 0:5.8±0.2      | 0: Face II 0.08/0.08, Face III 0.08/0.08   | 125±5/Specify                                 |  |
|                                                                                      | TF     | 1: 5.8±0.1     | 1: Face II 0.03/0. 03, Face III 0.03/0. 03 | 125±5/Specify                                 |  |
| Eg. TF01: Thickness 5.8±0.2(mm) and Flatness Face II 0.03/0. 03. Face III 0.03/0. 03 |        |                |                                            |                                               |  |

## Naming for the Module



TF01: Thickness  $\pm 0.3$ (mm) and Flatness/Parallelism 0.10/0.10mm)

# **Specification of Thermoelectric Module**

## TEC2-127-63-08

#### Performance Curves at Th=27 °C

#### Performance Curves at Th=50 °C





Standard Performance Graph Qc= f(DT)





Standard Performance Graph  $V= f(\Delta T)$ 





Standard Performance Graph Qc= f(V)

## **Specification of Thermoelectric Module**

TEC2-127-63-08



### Performance Curves at Th=50 °C





Standard Performance Graph COP = f(V) of DT ranged from 0 to 50 °C





Standard Performance Graph COP = f(V) of DT ranged from 60 to 80/90 °C

Remark: The coefficient of performance (COP) is the cooling power Qc/Input power (V × I).

## **Operation Caution**

- Attach the cold side of module to the object to be cooled
- Attach the hot side of module to a heat radiator for heat dissipating
- Operation below I<sub>max</sub> or V<sub>max</sub>
- Work under DC

Note: All specifications subject to change without notice.