Specification of Thermoelectric Module

TEC1-12708BT100

Description

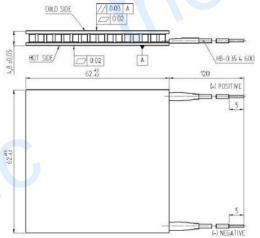
The 127 couples, 62mm x 62mm size module is a single stage module which is made of our high performance ingot to achieve superior cooling performance and 72 °C or larger delta Tmax, is designed for superior cooling and heating applications. Beyond the standard below, we can design and manufacture the custom made module according to your special requirements.

Features

- No moving parts, no noise, and solid-state
- Compact structure, small in size, light in weight
- Environmental friendly
- RoHS compliant
- Precise temperature control
- Exceptionally reliable in quality, high performance

Application

- Food and beverage service refrigerator
- Portable cooler box for cars
- Liquid cooling
- Temperature stabilizer
- CPU cooler and scientific instrument
- Photonic and medical systems


Performance Specification Sheet

Th (°C)	27	50	Hot side temperature at environment: dry air, N ₂	
DT _{max} (°C)	72	81	Temperature Difference between cold and hot side of the module when cooling capacity is zero at cold side	
U _{max} (Voltage)	16.1	17.0	Voltage applied to the module at DT _{max}	
I _{max} (Amps)	7.6	7.6	DC current through the modules at DT _{max}	
Q _{Cmax} (Watts)	78.9	84.9	Cooling capacity at cold side of the module under DT=0 °C	
AC resistance (Ohms)	1.65	1.77	The module resistance is tested under AC	
Tolerance (%)	± 10		For thermal and electricity parameters	

A. Solder:

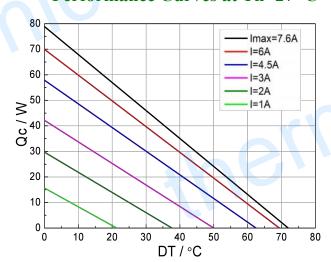
Geometric Characteristics Dimensions in millimeters

Manufacturing Options

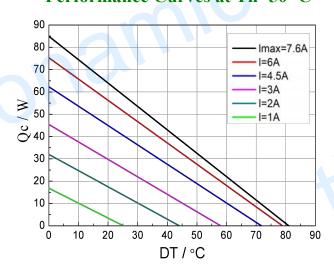
11. Soluci.	D. Scalanc.
1. T100: BiSn (Tmelt=138°C)	1. NS: No sealing (Standard)
2. T200: CuAgSn (Tmelt = 217°C)	2. SS: Silicone sealant
3. T240: SbSn (Tmelt = 240°C)	3. EPS: Epoxy sealant
C. Ceramics:	D. Ceramics Surface Options:
1. Alumina (Al ₂ O ₃ , white 96%)	1. Blank ceramics (not metalized)

B. Sealant:

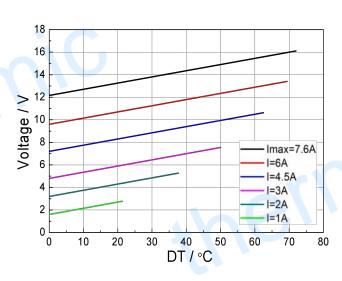
2. Aluminum Nitride (AlN) 2. Metalized

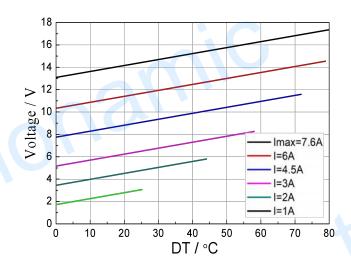

Ordering Option

Suffix	Thickness H (mm)	Flatness/ Parallelism (mm)Parallelism (mm)	Lead wire length(mm)Standard/ Optional length
TF	$0:4.8 \pm 0.10$	0: 0.10/0.10	120±3/Specify
TF	$1:4.8\pm0.05$	1: 0.05/0.05	120±3/Specify

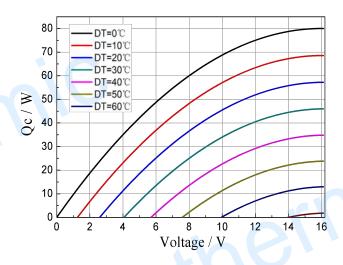

Specification of Thermoelectric Module

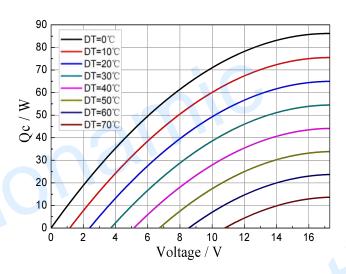
TEC1-12708BT100


Performance Curves at Th=27 °C

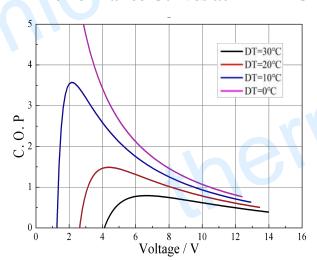


Performance Curves at Th=50 °C

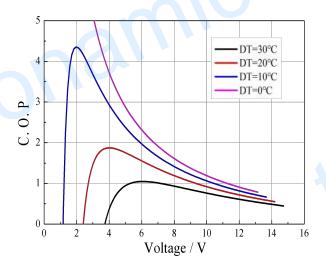



Standard Performance Graph Qc= f(DT)

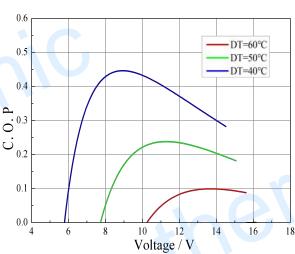
Standard Performance Graph V= f(DT)

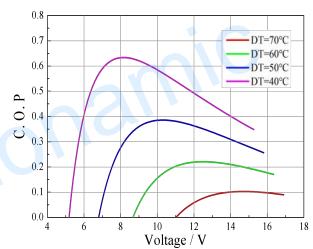


Standard Performance Graph Qc = f(V)


Specification of Thermoelectric Module

TEC1-12708BT100


Performance Curves at Th=27 °C



Performance Curves at Th=50 °C

Standard Performance Graph COP = f(V) of ΔT ranged from 0 to 30 $^{\circ}C$

Standard Performance Graph COP = f(V) of DT ranged from 40 to 60/70 °C

Remark: The coefficient of performance (COP) is the cooling power Qc/Input power ($V \times I$).

Operation Caution

- Attach the cold side of module to the object to be cooled
- Attach the hot side of module to a heat radiator for heat dissipating
- Operation below I_{max} or V_{max}
- Work under DC

Note: All specifications subject to change without notice.