Specification of Thermoelectric Module

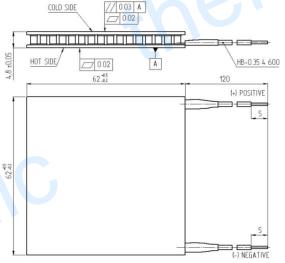
TEC1-12707BT200

Description

The 127 couples, $62 \text{ mm} \times 62 \text{ mm}$ size single stage module which is made of selected high performance ingot to achieve superior cooling performance and $70 \text{ }^{\circ}\text{C}$ or larger delta T max, is designed for superior cooling and heating applications. Beyond the standard below, we can design and manufacture the custom made module according to your special requirements.

Features

- No moving parts, no noise, and solid-state
- Compact structure, small in size, light in weight
- Environmental friendly
- RoHS compliant
- Precise temperature control
- Exceptionally reliable in quality, high performance


Application

- Food and beverage service refrigerator
- Portable cooler box for cars
- Liquid cooling
- Temperature stabilizer
- CPU cooler and scientific instrument
- Photonic and medical systems

Performance Specification Sheet

Th (°C)	27	50	Hot side temperature at environment: dry air, N ₂	
III (C)	21	30	1 , , ,	
DT _{max} (C)	70	79	Temperature Difference between cold and hot side of the module when cooling capacity is zero at cold side	
U _{max} (Voltage)	15.8	17.0	Voltage applied to the module at DT _{max}	
I _{max} (Amps)	7.5	7.5	DC current through the modules at DT _{max}	
Q _{Cmax} (Watts)	76.2	82.0	Cooling capacity at cold side of the module under DT=0 °C	
AC resistance (Ohms)	1.65	1.77	The module resistance is tested under AC	
Tolerance (%)	±10		For thermal and electricity parameters	

Geometric Characteristics Dimensions in millimeters

Manufacturing Options

A. Solder:

T200: CuSn (Tmelt=227 ℃)

B. Sealant:

SS: Silicone sealant

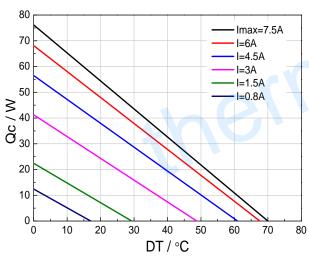
C. Ceramics:

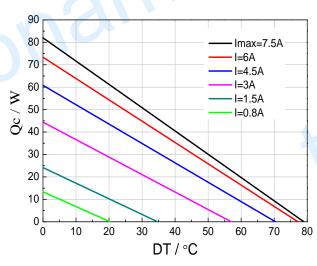
AlO: Al₂O₃, white 96%

D. Ceramics Surface:

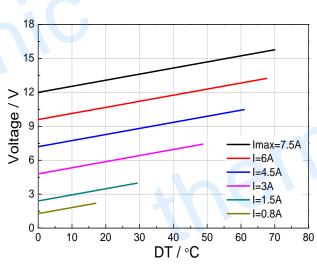
Blank ceramics (not metalized)

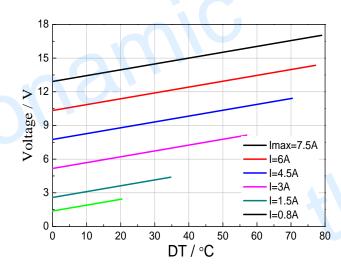
Ordering Option

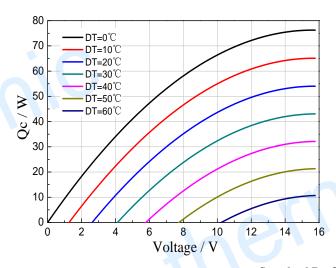

Suffix	Thickness H / (mm)	Flatness/ Parallelism (mm)	Lead wire length(mm) Standard/Optional length
TF	0:4.8±0.08	0:0.05/0.05	120±3/Specify
TF	1:4.8±0.05	1:0.02/0.03	120±3/Specify

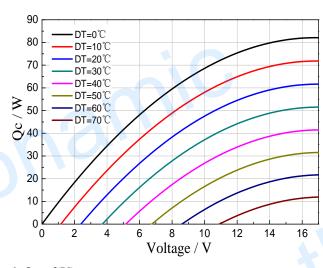

Specification of Thermoelectric Module

TEC1-12707BT200


Performance Curves at Th=27 ℃

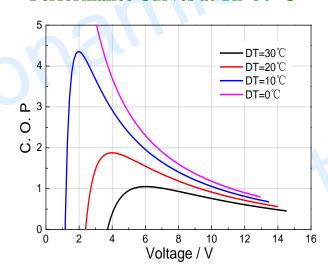

Performance Curves at Th=50 °C



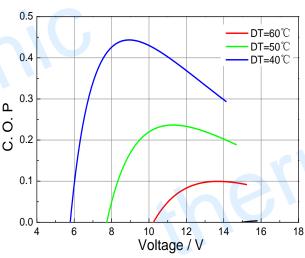

Standard Performance Graph Qc= $f(\Delta T)$

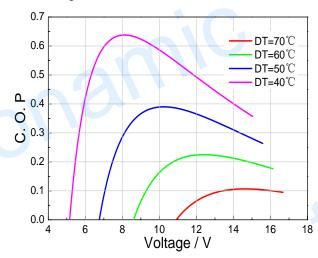
Standard Performance Graph $V = f(\Delta T)$

Standard Performance Graph Qc = f(V)


Specification of Thermoelectric Module

TEC1-12707BT200


Performance Curves at Th=27 ℃


DT=30°C DT=20°C DT=10°C DT=0°C DT=0°C Voltage / V

Performance Curves at Th=50 ℃

Standard Performance Graph COP = f(V) of ΔT ranged from 0 to 30 °C

Standard Performance Graph COP = f(V) of ΔT ranged from 40 to 60/70 °C

Remark: The coefficient of performance (COP) is the cooling power Qc/Input power (V × I).

Operation Cautions

- Attach the cold side of module to the object to be cooled
- Attach the hot side of module to a heat radiator for heat dissipating
- Operation below Imax or Vmax
- Work under DC